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Abstract. In this vision paper, we propose the trajGANs framework
and address the potential of using generative adversarial networks for
geo-privacy protection of trajectory data. Our goal is to provide a geo-
privacy protection layer for trajectory data publication and usage by
generating synthetic trajectories that can preserve the summary properties
of real data and have close-to-real-data performance in analysis tasks.
We summarize the trajectory types in geo-privacy protection and the
possible data generation scenarios. We also provide validation metrics
and address the possible challenges of implementing trajGANs.
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1 Introduction and motivation

People’s location information in cities is tracked by various sensors and mobile
devices, which produces massive trajectory data. The footprint of people’s daily
travel can be passively collected when their mobile phones connect to a nearby
cell tower, or be recorded by the apps installed on their mobile devices based on
GPS signals. Location information is also actively shared by users on social media
platforms, commonly referred to as ”check-ins”. Trajectory data are valuable
for commercial uses, such as targeted advertisements based on places users have
visited. Moreover, trajectory data contain rich information about people’s travel
patterns and their interactions with the urban built environment, which can
benefit academic research in fields such as transportation, geography, and urban
planning.

However, leveraging users’ detailed spatiotemporal traces in cities can easily
violate their privacy [6]. For example, it is possible to infer home/work location
and socioeconomic status of a user even from sparse social media check-in data.
Although personal identifiers such as user IDs are often removed to anonymize
trajectory data, users can still be re-identified with very little location information
[3]. For instance, if a social media company such as Foursquare published an
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anonymous check-in dataset, it would be possible to re-identify a user by cross-
referencing even only four or five check-ins he or she shared on Twitter.

Current research in geo-privacy protection for trajectory data has mainly
focused on two scenarios: disclosing real-time locations and publishing historical
trajectory data [13]. In both scenarios, the studies try to blur a user’s location
and add more uncertainty to reach the goal of K-anonymity and differential
privacy, while still maintaining a certain level of utility for specific analysis tasks
[2]. However, the trade-off between uncertainty and utility is hard to control: an
algorithm may obscure the trajectory data to the extent of perfectly protecting
geo-privacy, but cannot ensure the data quality for most use cases.

Rapidly-developing machine learning techniques can provide opportunities
to protect geo-privacy of trajectory data from new perspectives. Generative
adversarial networks (GANs [5]) are a family of neural network models that can
generate high-quality synthetic data which follow the same distribution as the
training data. A typical GAN contains a generator and a discriminator, which
are usually both neural networks, and it learns the original data distribution
by playing a minimax game. GANs do not require large input data and have
been widely adopted in producing high-quality images (e.g. [9]) that looks real.
GANs also provide potential solutions for some privacy issues. For example,
[1] designed medGAN to generate synthetic patient records that preserve the
statistical properties and achieved comparable performance in multiple tasks to
real data.

In this paper, we propose the trajGANs framework to address the potential for
and challenges of using GANs for geo-privacy protection when publishing people’s
trajectory data. The trajGANs can be used in the historical data publication
scenario as a geo-privacy protection layer (Figure 1). The goal of trajGANs
is to generate synthetic trajectory data that can ensure the quality of multiple
summary analysis tasks.

2 Trajectory types and data generation scenarios

A users trajectory is a sequence of consecutive location points accompanied with
time stamps, i.e. l1 → l2 → · · · → ln, where l =< x, y, t >. Raw trajectory
data are often messy and require preprocessing steps such as map matching and
stay-point detection to be transformed into more interpretable formats. One
unique property of human trajectories compared to movements of other animals
is that human travel in cities is constrained by the urban topology of places and
road networks.

Thus, we categorize processed trajectory data into two categories: road-
based trajectories and place-based trajectories. Road-based trajectories
are mapped to road networks and can be simplified as sequences of road segments
and time stamps, i.e. < s1, t1 >→< s2, t2 >→ · · · →< sn, tn >, where si refers
to a road segment. Trajectories of bikes and Uber/Lyft are often simplified into
road-based trajectories using map matching algorithms. They focus more on the
geometric information of trajectories (e.g. which road segments the user took)
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Fig. 1. Adding the geo-privacy protection layer in data publication using trajGANs can
contribute to privacy protection by generating synthetic trajectory data that preserve
summary analysis results compared to real data.

and are often used for route recommendation and transportation planning. Place-
based trajectories are usually simplified into sequences of places, such as points of
interest (POIs) or neighborhoods, and time stamps, i.e. < p1, t1 >→< p2, t2 >→
· · · →< pn, tn >, where pi refers to a place. They are rich in semantics: we can
infer the related activities, such as work, shopping, and dining, inherent to each
trip in a trajectory based on the property of the place. Social media check-in data
are an example of place-based trajectories, although other trajectory data, such
as mobile phone records, can also be transformed into place-based trajectories
using stay-point detection.

Based on the usage of published historical trajectory data, we further di-
vide the synthetic trajectory generation scenario into individual trajectory
generation and aggregated trajectory generation (Figure 2). Individual
trajectory generation aims to generate synthetic trajectories that have similar
properties to each individual people. The trajectory of a person needs to be
divided into multiple segments in order to train the generative model. For aggre-
gated trajectory generation, the goal is to generate synthetic trajectories that
approximate the summary statistics and analytical capabilities inherent to the
original dataset.

3 The trajGANs framework

Similar to a typical GAN [5], a trajGAN consists of two main parts: a generator
G and a discriminator D (Figure 3). The generator G accepts a random vector
z and generates dense representation of synthetic trajectory samples, while the
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Fig. 2. trajGANs can be designed to generate synthetic data that preserve properties
of the whole dataset or of each user.

discriminator D classifies an input trajectory sample into ”real” or ”fake”. G and
D are both neural networks. During the training process, the discriminator D
tries to maximize the probability of correctly labeling real and fake trajectories,
while the generator G tries to generate indistinguishable trajectory samples for
D. The G and D play a minimax game with the following objective function:

min
G

max
D

[Ex∼pdata
logD(x) + Ez∼p(z) log(1−D(Gx(z))] (1)

where pdata is the distribution of the real trajectory samples and p(z) is the
distribution of the random prior. In other words, in the training process, G learns
to map z sampled from the prior to the distribution of the original trajectory
data through non-linear transformations. Thus, after the training process, we are
able to use the generator to generate synthetic trajectories that share the same
properties as the real samples.

For designing a trajGAN, one challenge is creating dense representations of
trajectories, i.e. representing a trajectory as a fixed-length vector of numbers as
input and output for the generator and discriminator. Recurrent Neural Networks
(RNNs) combined with LSTM/GRU would be the ideal fundamental structure
for the encoder and decoder to transform between trajectories and distributional
representations [4]. Modifications are needed for different usage scenarios.

As the basic elements in a trajectory sequence, road segments and places are
often pre-trained into vector representations to feed into the RNNs for learning
trajectory embeddings. POI embedding is an emerging topic that could benefit
place-based trajectory generation, and the spatial and/or temporal properties
of POIs have been shown to improve performance [11, 12]. Some studies also
discretize continuous geographical space into small areas (e.g. grids, census
tracts) to reduce the complexity of place-based trajectories [8], while choosing
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Fig. 3. The framework of trajGANs. The detailed structure would vary according to
the properties of the input trajectories.

the granularity of those areas is an issue that needs attention. As for road-based
trajectories, they are strictly constrained by road networks since the transition of
road segments can only happen between the spatially adjacent ones. Thus, more
adaptations are needed on the RNN structure for encoding/decoding road-based
trajectories [10].

The representation of time-stamps in trajectory sequences is also poorly
addressed in the current literature since most related work focuses on predicting
the next location of a trajectory, which does not require a specific time-stamp.
Besides incorporating random process models, one possible solution for place-
based trajectories is dividing time stamps into slots and learning embeddings for
the slots such as hour of the day and day of the week. The learned time-stamp
vectors can be concatenated with place vectors and fed into the RNN based
encoder. In the decoding process, we can add random deviations to generate more
realistic time stamps based on the slots. For road-based trajectories, generating
time-stamps based on travel speed sampled from real data may be helpful.

As mentioned, travel patterns in cities are repetitive and often have anchor
points such as work and home places. Thus, for place-based trajectories, modifying
the trajGANs framework based on the conditional generative adversarial network
(CGAN) [7] may generate synthetic trajectories that are conditioned on certain
home and work locations sampled from residential and commercial areas, allowing
trajGANs to preserve more properties of the real trajectories while not revealing
home and work locations of individuals.



6 X. Liu et al.

4 Validation metrics

Based on trajectory types and data-generation scenarios, we propose multiple
validation metrics (Table 1) to measure the performance of a trajGAN. These
metrics cover different perspectives of trajectory-related analysis, and it may
be difficult for a model to perform well on all metrics. Thus, the tasks that
are commonly used for research and analysis of published datasets should be
emphasized and prioritized.

Table 1. Metrics for measuring the performance of trajGANs

Road-based trajectory Place-based trajectory

Individual trajectory
generation

segment usage distribution
segment usage temporality
transportation mode comparison
speed distribution
time in transit

activity space
radius of gyration
tortuosity
mobility motifs

Aggregated trajec-
tory generation

segment usage distribution
segment usage temporality
average speed distribution
user distribution
driving behavior

temporal semantics of POIs
trip-length distribution
trip-angle distribution
network-based urban structure
OD matrix comparison

5 Conclusions and Discussion

In this vision paper, we proposed the trajGANs framework, which aims to protect
geo-privacy of trajectory data by generating synthetic trajectories that preserve
the summary statistical properties of real data and offer competitive performance
in important tasks. Different from simulations, trajGANs directly sample from
the complex distribution of trajectory data through training samples instead of
generating trajectories with explicit functions based on pre-calculated statistical
metrics. Simulation models require a deep understanding of how and why people
travel, while trajGANs have the potential to preserve more properties of original
data in a more straightforward approach.

However, implementing trajGANs presents major challenges. Aside from
aforementioned trajectory embedding and time-stamp issues, we may also face
problems such as failing to identify the occasional inter-city travels of people.
Moreover, training GANs itself has many engineering challenges. We need to
prevent the model from overfitting or converging to a local optimum. If the model
simply copies the training data instead of generalizing high-level patterns in
trajectories, we may risk of violating privacy. Despite these challenges, efforts
to solve trajectory related geo-privacy issues are likely to pay-off in the future,
as these data have already revealed many interesting patterns about human
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behavior in the built environment, and need to be safeguarded to ensure their
continued use for planning and policy.
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